Kosteneffectiviteit van influenzaavaccinatie in Nederland

A.DEINDERS, M.J.POSTMA, TH.M.E.GOVAERT EN M.J.W.SPRENGER

Over de periode 1967-1989 veroorzaakte influenza in Nederland gemiddeld 440 sterfgevallen per jaar. Indirect, via sterfte in andere ziektecategorieën die aan influenza wordt toegeschreven (oversterfte), komen daar naar schatten nog eens 1140 sterfgevallen per jaar bij.1 Ten aanzien van de aan influenza verbonden kosten komen schattingen voor de Verenigde Staten uit op 3 tot 5 miljard dollar per jaar.2 De meeste van deze kosten zijn indirecte kosten, vooral door ziekteverzuim. Ongeveer 1 miljard dollar valt toe te schrijven aan extra ziekenhuisopnamen als gevolg van een influenza-epidemie.3

Preventie door jaarlijkse vaccinatie kan influenza ten dele voorkomen.4 Er is in Nederland een discussie gaan de of alleen de risicogroepen gevaccineerd moeten worden of daarnaast ook de overige populatie van 65 jaar en ouder, ten eerste omdat meer dan 90% van de sterfte aan influenza zich in die leeftijdsgroep voordoet en ten tweede omdat een groot deel van de risicopatiënten niet als zodanig bekend is.5 Diverse buitenlandse onderzoeken hebben aangetoond dat aanzienlijke besparingen binnen de gezondheidszorg bereikt kunnen worden door influenzavaccinatie van ouderen.6 In sommige gevallen overtreffen de geschatte besparingen de kosten van vaccinatie.7 In een groot aantal landen adviseert men daarom alle ouderen te vaccineren.8

De doelstelling van dit onderzoek was een kosten-effectiviteitsanalyse te verrichten voor Nederland van een opzet waarbij behalve de bekende risicogroepen in de leeftijd van 64 jaar of jonger, ook alle 65-plussers werden gevaccineerd. Aangenomen werd dat een vaccinatiegraad van 75% haalbaar is. Een gedetailleerd verslag van dit onderzoek is in rapportvorm gepubliceerd.9

SAMENVATTING

Doel. De kosteneffectiviteit bepalen van influenzavaccinatie voor alle mensen van 65 jaar en ouder in Nederland.

Opzet. Modelberekeningen.

Plaats. Rijksinstituut voor Volksgezondheid en Milieu, Bilthoven.

Methode. De kosteneffectiviteit van vaccinatiestrategieën werd doorgerekend met een mathematisch model. Daarmee kunnen de epidemiologische effecten in termen van morbidity en sterfte alsmede de directe zorgkosten van een influenza-epidemie worden bepaald. Vergeleken werden de kosteneffectiviteit van niet-vaccineren, van het huidige vaccinatiescenario en van een alternatief scenario waarbij driekwart van de 65-plussers en de risicogroepen jonger dan 65 jaar worden gevaccineerd.

Resultaten. De met influenza samenhangende zorg (huisartsencontacten en verpleegdagen) en kosten daalden meer bij het vaccineren van alle 65-plussers (alternatief scenario) dan bij het vaccineren van uitsluitend risicogroepen. Hoewel de zorgkosten daalden naarmate er meer mensen werden gevaccineerd, stegen de kosten van vaccinatie, waardoor de totale nettokosten hoger uitkwamen (55 miljoen versus 24 miljoen gulden per jaar). In het alternatieve scenario werden 1115 levensjaren per jaar meer gewonnen dan met het huidige vaccinatiebeleid.

Conclusie. Het vaccineren tegen influenza van alle risicogroepen en alle 65-plussers heeft in vergelijking met andere preventieve interventies een gunstige kosteneffectiviteitsratio.

METHODE

Het model voor het berekenen van de effecten en de kosten van influenzaavaccinatie bestond uit twee onderdelen: een epidemiologisch model waarmee de sterfte, de oversterfte en het aantal verloren levensjaren als gevolg van influenza werden berekend, en een kostenmodel waarin de epidemiologische uitkomsten werden verdaald naar zorgvolume en kosten. Zoals in figuur 1 te zien is, kunnen parameters de resultaten van het model beïnvloeden. Het model is geschikt voor de berekening van zowel de totale kosten als de kosteneffectiviteit. De kosteneffectiviteit wordt uitgedrukt in kosten per gewonnen levensjaar.

Het epidemiologisch model. Voor de sterfte werd de gemiddelde sterfte met influenza als primaire doodsoorzaak genomen voor de periode 1987-1991. Ook berekenden wij de oversterfte als gevolg van influenza voor de
risicogroepen van patiënten met pneumonie, CARA, coronair hartaandoeningen, cerebrovasculair accident, diabetes mellitus en ‘overige’.1 Hierbij werd gecorrigeerd voor comorbiditeit van twee aandoeningen. Op basis van de sterfte- en oversterftetcijfers en de gegeven incidentie van influenza kon de sterftekans per leeftijdsklasse worden berekend.

De bescherming bij een bepaalde vaccinatiegraad volgt uit het gevaccineerde deel van de populatie maal de werkzaamheid (56%) van het vaccin.2 Het op deze manier berekende aantal beschermden werd van de diverse subpopulaties (naar leeftijd en risicogroep) afgetrokken. Van de niet-gevacineerde bevolkingsgroep krijgt 10% influenza (frequentie bij een ‘gemiddelde’ epidemie).3 Dat betekent dat bij 1 op de 18 gevaccineerde personen influenza door vaccinatie wordt voorkomen (56% van 10%).

Voor dit onderzoek namen wij de Nederlandse populatie van 1995, onderverdeeld naar leeftijd (65-plussers en personen jonger dan 65) en risicogroep (laag risico en hoog risico). Per leeftijdscategorie en per aandoening werd vervolgens het aantal verloren levensjaren berekend (56% van 10%).

Het kostenmodel. De totale kosten zoals het kostenmodel die berekende, bestonden uit enerzijds de kosten die gemaakt worden om een bepaald gedeelte van de populatie te vaccineren en anderzijds de kosten die ontstaan doordat een bepaald gedeelte van de populatie influenza krijgt. Kosten worden besproken indien ze voorkomen worden door bijvoorbeeld vaccinatie.4 Het kostenmodel koppelde de directe kosten van gezondheidszorg in de eerste en tweede lijn aan de epidemiologische resultaten. Op basis van de epidemiologische uitkomsten werd het zorgvolume berekend (bijvoorbeeld huisartscontacten of verpleegdagen). Door hier prijzen aan te koppelen konden de kosten voor de eerste- en tweede-lijn gezondheidszorg berekend worden.

De totale vaccinatieprijs bedroeg in 1995 f 42,50, bestaande uit f 25,– voor het vaccin (afapotheek) en f 17,50 voor de toediening van het vaccin (een half huisartsconsult volgens particulier tarief).

Scenario’s. In de eerste plaats gingen wij na wat de gevolgen van influenza zouden zijn indien er niet zou worden gevaccineerd, uitgedrukt in kosten en verloren levensjaren. Dit werd aangeduid met ‘non-interventie-senario’. Vervolgens werden de kosten en de verloren levensjaren van dit scenario vergeleken met de situatie-1994 en met een alternatief scenario, waarbij de vaccinatiegraad voor de risicogroepen en de 65-plussers die niet tot een risicogroep behoren tot 75% zou worden opgevoerd (tabel 1). De groep van gezonde jongeren (< 65 jaar) werd voor de verdere berekeningen buiten beschouwing gelaten.

Voor alle scenario’s rekenen wij een variant door waarin de totale kosten van het vaccin op f 18,75 werden gesteld (f 10,– aanschaf en f 8,75 toediening; een kwart huisartsconsult).

RESULTATEN

In tabel 2 is te zien dat incidentie, sterfte en verloren levensjaren afnamen naarmate meer personen gevaccineerd werden. Het zorgvolume (huisartsconsulten, medicijengebruik en verpleegdagen) nam eveneens af (tabel 3).

Figuur 2 toont de kosten van verpleegdagen (zie lijn), huisartsconsulten en de gebruikte medicijnen (zie lijn). Indien meer mensen werden gevaccineerd, daalde het zorgvolume (zie tabel 3) en daardoor de kosten voor huisarts, medicijnen en ziekenhuis. De kosten van vaccinatie stegen echter naar verhouding meer, waardoor

TABLE 1. Vaccinatiegraad (als fractie gevaccineerden) bij verschillende scenario’s van influenzavaccinatie

<table>
<thead>
<tr>
<th>scenario</th>
<th>leeftijd en risico</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 65 jaar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>risicogroep</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>geen risicogroep</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>non-interventie*</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>huidige situatie†</td>
<td>0,30</td>
<td>0,27</td>
<td>0,68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>alternatief scenario‡</td>
<td>0,75</td>
<td>0,75</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Geen vaccinatie.
†De huidige situatie gaat uit van de vaccinatiegraad van 1994 volgens de gezondheidsenquête van het Centraal Bureau voor de Statistiek
‡Vaccinatiegraad van 75% voor risicogroepen en voor 65-plussers die niet tot een risicogroep behoren.

TABLE 2. Incidentie, sterfte en verloren levensjaren in Nederland bij verschillende scenario’s van influenzavaccinatie

<table>
<thead>
<tr>
<th>scenario</th>
<th>aantal</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gevaccineerden (x 1000)</td>
<td>influenza-gevallen (x 1000)</td>
<td>overleden</td>
<td>verloren levensjaren</td>
</tr>
<tr>
<td>non-interventie*</td>
<td>0</td>
<td>278</td>
<td>1231</td>
<td>8996</td>
</tr>
<tr>
<td>huidige situatie†</td>
<td>1067</td>
<td>218</td>
<td>875</td>
<td>6333</td>
</tr>
<tr>
<td>alternatief scenario‡</td>
<td>2086</td>
<td>161</td>
<td>714</td>
<td>5218</td>
</tr>
</tbody>
</table>

*Geen vaccinatie.
†De huidige situatie gaat uit van de vaccinatiegraad van 1994 volgens de gezondheidsenquête van het Centraal Bureau voor de Statistiek.
‡Vaccinatiegraad van 75% voor risicogroepen en voor 65-plussers die niet tot een risicogroep behoren.

Ned Tijdschr Geneeskd 1997 11 januari;141(2)
TABEL 3. Zorgvolume bij drie verschillende scenario’s voor influenza-
vaccinatie in Nederland (aantallen × 1000)

<table>
<thead>
<tr>
<th>scenario</th>
<th>huisarts-</th>
<th>medicijn-</th>
<th>verpleeg-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>consulten*</td>
<td>gebruik†</td>
<td>dagen</td>
</tr>
<tr>
<td>non-interventie†</td>
<td>181</td>
<td>325</td>
<td>26</td>
</tr>
<tr>
<td>huidige situatie§</td>
<td>142</td>
<td>256</td>
<td>20</td>
</tr>
<tr>
<td>alternatief scenario[</td>
<td>105</td>
<td>189</td>
<td>15</td>
</tr>
</tbody>
</table>

*Alle bezoeken aan en van de huisarts en alle telefonische consulten (exclusief consulten ten behoeve van de vaccinatie).
†Alle medicijnen, zowel voorgeschreven medicijnen als zelfmedicatie, gebaseerd op cijfers van het consumentenpanel van het Nederlands Instituut voor Onderzoek van de Gezondheidszorg (NIVEL).
§Geen vaccinatie.
[De huidige situatie gaat uit van de vaccinatiegraad van 1994 volgens de gezondheidsenquête van het Centraal Bureau van de Statistiek.
| Vaccinatiegraad van 75% voor risicogroepen en voor 65-plussers die niet tot een risicogroep behoren.

per saldo de nettokosten stegen (tabel 4). Door in de huidige situatie netto 24 miljoen gulden te investeren in vaccinatie, vergeleken met non-interventie, zouden 2603 levensjaren worden gewonnen (tabel 5). Dit betekende f 9200,- gulden per gewonnen levensjaar. In het alternatieve scenario bedroegen de kosten per gewonnen levensjaar ruim f 14.600,-. Indien de lagere vaccinatieprijs werd aangehouden, bedroegen de kosten in het alternatieve scenario f 1600,- per gewonnen levensjaar (tabel 6).

BESCHOUWING

Vaccinatie reduceert ziekte en sterfte, en daarmee de zorgkosten, als gevolg van influenza. Om dit te bereiken, dient geïnvesteerd te worden in vaccinatie. Onze berekeningen laten zien dat het nettoresultaat is dat de totale

kosten stijgen. De kosten per gewonnen levensjaar bedroegen in het alternatieve scenario f 14.600,-. Indien de vaccinatieprijs daalde tot f 18,75, daalden de de netto-kosten aanzienlijk (tot f 1600,-).

De vraag is hoe deze resultaten zich qua kостенеfectiviteit verhouden tot andere programma's binnen de gezondheidszorg in Nederland (tabel 7). Voor een zinvolle vergelijking moet aan een aantal condities voldaan worden.13 Hierbij speelt onder andere een rol dat de te vergelijken onderzoeken dezelfde kostensoorten omvatten en dat ze dezelfde manier en hoogte van disconttering hanteren (bij disconttering wordt het aantal gewonnen levensjaren in de nabije toekomst meer waarde toegekend dan jaren verder weg). Daarom zijn ten behoeve van tabel 7 alleen gepubliceerde onderzoeken met uitsluitend directe kosten geselecteerd en is een discontteringpercentage van 5 voor monetaire bedragen en voor gewonnen levensjaren gehanteerd. Dit laatste leidt ertoe dat de getallen voor influenza vaccinatie in de tabel afwijkingen van de eerder in dit artikel vermelde bedragen. Afhankelijk van de prijs van het vaccin liggen de kosten per gewonnen levensjaar bij 5% disconttering tussen f 2000,- en f 17,000,-. Omdat de onderzoeken in tabel 7 slechts op hoofdlijnen vergelijkbaar zijn, blijft voorzichtigheid geboden bij de interpretatie van dit soort tabellen.

In de onderzoeken van tabel 7 wordt de interventie vergeleken met een ‘huidige situatie’, terwijl wij de vergelijking trokken met een non-interventiescenario. In veel andere onderzoeken vallen ‘huidige situatie’ en

FIGUUR 2. Totale kosten (in miljoenen gulden) voor 3 verschillende scenario’s van influenza vaccinatie; non-interventie (geen vaccinatie); de huidige situatie, die uitgaat van de vaccinatiegraad van 1994 volgens de gezondheidsenquête van het Centraal Bureau voor de Statistiek; een alternatief scenario waarbij de vaccinatiegraad 75% bedraagt voor risicogroepen en voor 65-plussers die niet tot een risicogroep behoren; kosten van zorg (□); kosten van vaccinatie (■).

TABEL 4. Kosten en besparingen in de Nederlandse zorg bij 2 scenario’s van influenza vaccinatie ten opzichte van niet-vaccineren (bedragen in miljoenen gulden)

<table>
<thead>
<tr>
<th>scenario</th>
<th>kosten van vaccinatie*</th>
<th>totale besparing</th>
<th>netto-kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>huidige situatie†</td>
<td>47</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>alternatief scenario‡</td>
<td>91</td>
<td>36</td>
<td>55</td>
</tr>
</tbody>
</table>

*Deze kolom bevat de totale kosten van vaccinatie.
†De huidige situatie gaat uit van de vaccinatiegraad van 1994 volgens de gezondheidsenquête van het Centraal Bureau voor de Statistiek.
‡Vaccinatiegraad van 75% voor risicogroepen en voor 65-plussers die niet tot een risicogroep behoren.

TABEL 5. Kosten (in gulden) per gewonnen levensjaar in 3 scenario’s van influenza vaccinatie

<table>
<thead>
<tr>
<th>scenario</th>
<th>verloren levensjaren</th>
<th>gewonnen levensjaren</th>
<th>netto-kosten (in 10⁶ gulden)</th>
<th>kosten per gewonnen levensjaar (in gulden)</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-interventie*</td>
<td>8996</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>huidige situatie†</td>
<td>6333</td>
<td>2663</td>
<td>24</td>
<td>9200</td>
</tr>
<tr>
<td>alternatief scenario‡</td>
<td>5218</td>
<td>3778</td>
<td>55</td>
<td>14600</td>
</tr>
</tbody>
</table>

*Geen vaccinatie.
†De huidige situatie gaat uit van de vaccinatiegraad van 1994 volgens de gezondheidsenquête van het Centraal Bureau voor de Statistiek.
‡Vaccinatiegraad van 75% voor risicogroepen en voor 65-plussers die niet tot een risicogroep behoren.

Ned Tijdschr Geneeskd 1997 11 januari;141(2) 95
TABEL 6. Kosten en gewonnen levensjaren van influenzavaccinatie bij verschillende prijzen per vaccinatie (door afrondingen sluiten sommige getallen niet helemaal op elkaar aan)

<table>
<thead>
<tr>
<th>scenario</th>
<th>prijs per vaccinatie</th>
<th>aantal vaccinaties</th>
<th>kosten vaccinatie (in 10(^6) gulden)</th>
<th>zorgkosten (in 10(^6) gulden)</th>
<th>gewonnen levensjaren</th>
<th>kosten per gewonnen levensjaar (in gulden)</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-interventie*</td>
<td>42,50</td>
<td>0</td>
<td>0</td>
<td>86</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>18,75</td>
<td>0</td>
<td>0</td>
<td>86</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>huidige situatie†</td>
<td>42,50</td>
<td>1067</td>
<td>47</td>
<td>63</td>
<td>2663</td>
<td>9200</td>
</tr>
<tr>
<td></td>
<td>18,75</td>
<td>1067</td>
<td>22</td>
<td>63</td>
<td>2663</td>
<td>200</td>
</tr>
<tr>
<td>alternatief scenario‡</td>
<td>42,50</td>
<td>2086</td>
<td>91</td>
<td>50</td>
<td>3778</td>
<td>14600</td>
</tr>
<tr>
<td></td>
<td>18,75</td>
<td>2086</td>
<td>42</td>
<td>50</td>
<td>3778</td>
<td>1600</td>
</tr>
</tbody>
</table>

*Geen vaccinatie.
†De huidige situatie gaat uit van een de vaccinatiegraad van 1994 volgens de gezondheidsenquête van het Centraal Bureau voor de Statistiek.
‡Vaccinatiegraad van 75% voor risicogroepen en voor 65-plussers die niet tot een risicogroep behoren.

‘non-interventie’ samen. Bij influenza in Nederland wordt echter in de huidige situatie reeds geïnterveernde. Vergelijking met de huidige situatie geeft een onderschatting van het effect van vaccineren van 65-plussers, door welke onderschatting de kosten per gewonnen levensjaar worden overschat: bij vergelijken met de huidige situatie komen de kosten voor vaccineren van risicogroepen en ouderen uit op f 28.000,– (zonder discontering).

In dit onderzoek drukten wij uitsluitend de directe kosten in geld uit. Amerikaans onderzoek laat zien dat, afhankelijk van de gekozen methode voor de waardering van de indirecte kosten, bij een kostenanalyse de in geld uitgedrukte indirecte kosten mogelijk de directe kosten vele malen kunnen overtreffen. Er bestaat echter geen eenduidigheid over de methodologie die gebruikt moet worden om de indirecte kosten in geld uit te drukken (zogenaamde ‘human capital’-methode (dat is de berekening van de productieverlies door de volledige periode van ziekteverzuim, eventuele arbeidsongeschiktheid en verloren levensjaren door overlijden, in jaren, te vermenigvuldigen met het jaarlijkse salaris; dit betekent bijvoorbeeld bij langdurige arbeidsongeschiktheid een aanzienlijk bedrag) of frictiekostenmethode (deze gaat ervan uit dat bij langdurig verzuim of overlijden en niet-volledige werkgelegenheid uitsluitend de kosten van vervanging doorberekend dienen te worden; deze kosten betreffen die van de sollicitatie, het opleiden en het inwerken van de nieuwe medewerker)). Wel is het duidelijk dat influenza veel ziekteverzuim kan veroorzaken, zodat het tot hoge kosten in de arbeidsseer kan leiden. Indien wij de Amerikaanse situatie, waarin de indirecte kosten 2-4 zo groot zijn als de directe kosten, naar de Nederlandse situatie extrapoleren, zouden de indirecte kosten 126-252 miljoen gulden bedragen.

In een overzicht van onderzoeken over de kosteneffectiviteit van influenzavaccinatie bij ouderen vonden Jefferson et al. dat de kosten per gewonnen levensjaar $ 100,– tot $ 200,– bedroegen. Eén onderzoek laat zelfs zien dat vaccinatie kostenbesparend kan zijn. Dit grote verschil met onze resultaten wordt vooral veroorzaakt door de lage vaccinatieprijs in de Amerikaanse onderzoeken (variërend van $ 4,– tot $ 11,–). Indien wij deze vaccinatieprijzen in de Nederlandse situatie zouden hanteren (omgerekend naar een koers van f 1,75 voor een dollar: f 7,– tot f 19,25), dan zouden de kosten per gewonnen levensjaar variëren van minus f 4900,– tot plus f 1600,–, hetgeen veel meer in de richting van deze Amerikaanse onderzoeken komt. Een recent Belgisch onderzoek, met een vaccinatieprijs van circa f 35,–, laat als voorlopig resultaat circa f 8000,– voor de kosten per gewonnen levensjaar zien. Met andere woorden: als wij vergelijkbare prijzen hanteren voor vaccinatie sluiten onze resultaten beter aan bij buitenlandse bevindingen. Het laat zien hoe belangrijk het is om dezelfde randvoorwaarden te hanteren indien onderzoeken met elkaar worden vergeleken.

Het verlies aan kwaliteit van leven als gevolg van influenza door bijvoorbeeld ziekenhuisopname betrokken wij niet in ons onderzoek. Hierdoor werd de te behalen winst onderschat en daarmee ook de te behalen winst ten gevolge van vaccinatie. Door Sprenger et al. is in 1987 een onderzoek gepubliceerd over de economische evaluatie van influenzavaccinatie waarin ook de gewonnen levenskwaliteit (‘quality-adjusted life year’; QALY) werd meegeteld. Zij vonden dat de kosten van een OALY f 2500,– bij vaccinatie van de risicogroep. In het door ons gehanteerde model zou vaccinatie van risicogroepen bij eenzelfde vaccinatieprijs per gewonnen

TABEL 7. Kosteneffectiviteit van een aantal interventieprogramma’s in de Nederlandse gezondheidszorg

<table>
<thead>
<tr>
<th>interventieprogramma</th>
<th>kosten per gewonnen levensjaar (in gulden)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>influenza-vaccinatie (lage vaccinatieprijs)†</td>
<td>1900</td>
</tr>
<tr>
<td>hepatitis-B-screening</td>
<td>84001†</td>
</tr>
<tr>
<td>influenza-vaccinatie (huidige vaccinatieprijs)‡</td>
<td>17300†</td>
</tr>
<tr>
<td>syfilis screening</td>
<td>17900‡</td>
</tr>
<tr>
<td>cervixcarcinoomscreening</td>
<td>29000‡</td>
</tr>
<tr>
<td>harttransplantatie</td>
<td>52000‡</td>
</tr>
</tbody>
</table>

* Bij 5% discontering van monetair bedragen en van gewonnen levensjaren.
† Lage vaccinatieprijs: f 18,75.
‡ Huidige vaccinatieprijs: f 42,50.

Ned Tijdschr Geneeskd 1997 11 januari;141(2)
levensjaar f 4000,- kosten. Indien wij waren uitgegaan van de QALY-benadering zouden de kosten van vaccinatie per gewonnen levensjaar, gecorrigeerd voor kwaliteit, lager uitkomen. De uitkomsten van deze twee onderzoeken zijn dus vergelijkbaar.

Wij concluderen dat, bij de huidige aannamen, het vaccineren tegen influenza van alle risicogroepen en alle 65-plussers vergeleken met andere preventieve interventieprogramma’s een gunstige kosteneffectiviteitsratio heeft.

taar.

ABSTRACT

Cost-effectiveness of influenza vaccination in the Netherlands Objective. To determine the cost-effectiveness of influenza vaccination of all people aged 65 or over in the Netherlands. Design. Model calculations. Setting. National Institute of Public Health and Environment, Bilthoven, the Netherlands. Method. The cost-effectiveness of vaccination strategies was calculated using a mathematical model, with the epidemiological effects in terms of morbidity and mortality as well as the direct costs of care of an influenza epidemic can be determined. The cost-effectiveness of non-intervention, of the current vaccination scenario for risk groups, and of an alternative scenario involving vaccination of all persons aged 65 or over and of all younger persons in risk groups, was calculated. Results. Influenza-related care (the number of GP contacts and hospital days) and related costs decreased more with the alternative than with the current risk group scenario. Although the costs of care decreased when more people were vaccinated, the cost of vaccination increased more so that total net costs rose (55 million guilders versus 24 million). In the alternative scenario yearly 1115 life years more were won than with the current practice. Conclusion. Vaccinating all risk groups and all persons aged 65 or more has a favourable cost-effect ratio in comparison with other preventive intervention programmes.

LITERATUUR

11 Ruwaard D, Kramers PGN, redacteuren. Volksgezondheid Toe-
14 Koopmanschap MA, Roijen L van, Bonneau L, Barendregt JJ. Indirect costs in economic studies: confronting the confusion. Phar-
macoecon 1993;6:446-54.
15 Nichol KL, Margolis KL, Wuorema J, Von Sternberg T. The effi-
16 Lombaert G. Vaccinatie tegen griepp: een economische evaluatiestude voor België. Informatiebulletin Vereniging voor Gezondheids-
economie 1996;3:8-10.
17 Sprenger MJW, Beyer WEP, Ament AJHA, Rutten FFH, Masurel N. Influenza-vaccinatie leidt tot kostenbesparing in de gezondhedszorg. TSG 1987;65:222-5.
19 Gruteke P, Postma MJ, Groshede PM, Jager JC, Conyn-van Spaeden
donk MAE, Loeben JG. Preventie van congenitale syfilis. RIVM-

Aanvaard op 28 november 1996

Bladvulling

Hoe de behandeling van een carcinoom te regelen

Nu de moraal!! Regels voor te schrijven, waarop men voor altijd kan vertrouwen, zou zijn den practicus met nieuwe domino’s te verblinden. Slechts een enkele aanwijzing en opwekking!

Enkele uiterst maligne vormen uitgezonderd, hebben de meeste tumoren een vrij langdurig stadium van onbepaalde en zeer weinig alarmerende verschijnselen. Ieder Uwer zal eer-
lijk genoeg zijn te bekennen, dat hij meermalen patiënten lange
tijd behandelde, zonder er op bedacht te zijn geweest, dat zul je een malignen tumor bezaten, die plotseling als pure verras-
sing en vaak te laat duidelijk werd. Deze wetenschap en het fei-
dat het verloop der tumoren in functioneel en algemene ge-
volgen zooveel afwijken kan van wat hierover in de handboe-
ken beschreven wordt, moge er toe leiden, meer de malignen
tumor in de kring van ons diagnostisch denken op te nemen.

(Ned Tijdschr Geneesk 1897;41:163.)

Ned Tijdschr Geneesk 1997 11 januari;141(2)