Commentaren

Het gebruik van genen bij de behandeling van kanker

G.A.P. HOSPERS EN N.H. MULDER

INLEIDING
De behandeling van patiënten met uitgezaaide vormen van kanker is in veel gevallen niet curatief. Dit ondanks de inzet van diverse chirurgische, radiotherapeutische en chemotherapeutische behandelingen of combinaties daarvan. Op basis van laboratoriumonderzoek en de eerste klinische onderzoeken zouden genen in de toekomst kunnen worden ingezet bij de behandeling van kanker, in de vorm van gentherapie. Hierbij kunnen genen of, anders gezegd, specifieke stukjes DNA in bepaalde cellen van patiënten gebracht worden (zie verderop). Een ziekte als gevolg van een gendefect kan men behandelen door in de afwijkende genen in de goede genen in te brengen; een andere toepassing van gentherapie is dat men een nieuw gen aan een cel toevoegt, waardoor het gedrag van die cel veranderd kan worden.

Gentherapie als ‘magic bullit’ voor kanker lijkt in eerste instantie niet de meest aangewezen behandeling, zolang niet duidelijk is welk gen of welke genen de oorzaak vormen. De meeste kancercellen hebben wel een genetisch defect, maar dit defect is veelal niet de oorzaak van de kanker. Er zijn slechts een paar ‘oorzakelijke’ genen geïdentificeerd, het duidelijkste voorbeeld hiervan is het retinoblastoom (RB)-gen. Deze tumoren kunnen behandeld worden met het ‘goede gen’.

Bij gentherapie waarmee nieuwe genen aan cellen worden toegevoegd, beoogt men:
- de kancercel te veranderen in een normale cel;
- normaal weefsel te beschermen tegen chemotherapie;
- het immunosysteem te activeren tegen kancercellen; of
- de kancercellen van binnen uit te doden.

Behalve het argument dat niet altijd een oorzakelijk gen gevonden kan worden, gold tot voor kort nog een ander argument tegen gentherapie: elke kancercel zou genetisch veranderd moeten worden voor het elimineren van de tumor. Recentelijk is echter duidelijk geworden dat onder bepaalde omstandigheden één genetisch veranderde tumorcel maar liefst 9 à 10 onveranderde tumorcellen kan elimineren. Dit wordt het ‘bystander’-effect genoemd. Een sluitende verklaring voor dit effect heeft men nog niet gevonden.

Bij de toename van kennis over het inbrengen van genen in cellen worden ook de toepassingsmogelijkheden bij de behandeling van kanker beter afgebrand.

In dit artikel gaan wij in op de mogelijkheden om genen te gebruiken bij de behandeling van kanker en op de voorwaarden om deze therapie toe te passen in de kliniek.

Hoe kunnen genen worden gebruikt bij de behandeling van kanker?
Er zijn verschillende methoden ontwikkeld voor het inbrengen van een gen in een humane cel; deze worden ook wel transductiesystemen genoemd en kunnen worden onderverdeeld in chemische, fysische en virale systemen. Bij het chemische transductiesysteem maakt men gebruik van partikeltjes waarin het DNA verpakt kan worden. Dit partikeltje fuseert met de celmembran, zodat de inhoud van het partikeltje in de cel kan komen. Bij het fysische systeem gebruikt men apparatuur waar mee het DNA in de cel kan worden gebracht. Het virale systeem is het meest effectief gebleken in humane cellen. Er zijn verschillende virale systemen: retrovirale, adenvirale en met het adenovirus samenhangende systemen. In klinisch-oncologisch onderzoek wordt vooral het retrovirale systeem gebruikt; dit systeem is tot nu het beste onderzocht, met name op het punt van veiligheid. Bij dit systeem maakt men gebruik van een retrovirale vector. Dat is een stukje DNA dat informatie bevat waarmee het in retrovirale virusdeeltjes kan worden ingepakt, en het bevat de informatie van het therapeutische gen. Tevens wordt gebruik gemaakt van een cellijn die virale eiwitten kan maken nodig voor het maken van virusdeeltjes. Een dergelijke cellijn wordt een ‘packaging’ cellijn genoemd. Door nu de retrovirale vector met het betreffende gen in de packaging cel te brengen, kan deze packaging cel vervolgens retrovirale virusdeeltjes maken. Met de gevormde virusdeeltjes kan men de gewen-
ste cellen infecteren, waarop het gen in het DNA kan worden ingebouwd. De geïnfecteerde cellen zijn echter niet in staat opnieuw infectieuze virusdeeltjes te maken, doordat het ingebrachte DNA de informatie mist voor het maken van de retroviraal kapseleiwitten. In het retroviraal systeem wordt gebruik gemaakt van retrovirus; deze virusen attaqueren alleen delende cellen. Dit is een voordeel, want men wil met de transductie selectief tumourcellen uitschakelen, maar het kan een nadeel zijn wanneer langzaam delende cellen met een vreemd stukje DNA veranderd moeten worden, hetgeen het geval is bij bijvoorbeeld beennergcellen.

Een gen kan pas in de kliniek gebruikt worden, als het geplaatst is in een transductiesysteem en als de veiligheid van dit systeem is getest. Bij het virale transductie systeem bestaat de mogelijkheid dat door recombinatie van DNA virusdeeltjes ontstaan die bij herhaling infectieus blijven; dit worden helpervirussen genoemd. Daarom moet men in verband met de veiligheid dit virale transductiesysteem voor gebruik in vivo niet alleen op toxiciteit en steriliteit testen, maar ook op de aanwezigheid van helpervirussen.

WAT WORDT MET GENTHERAPIE BEOOGD?

De toepassing van genen bij kankertherapie kan de volgende doelen dienen:

Het veranderen van de kankercel in een normale cel.

Men onderscheidt 2 groepen genen die betrokken zijn bij het ontstaan en de progressie van kanker: de proto-oncogenen en de tumoursuppressorgenen. Het veranderen van de activiteit van deze genen kan resulteren in een wijziging van het groeigedrag van de kancercel, waarbij gestreefd wordt dit groeigedrag om te zetten in dat van normale cellen. Als eerste bespreken wij de proto-oncogenen.

Een proto-oncogeen is een gen dat in normale cellen niet actief is. Een proto-oncogeen dat op een of andere manier is geactiveerd, wordt een oncogeen genoemd. Het eiwiprodukt waarvoor een oncogeen de genetische informatie bevat, een eiwit, kan door deze activering een hogere concentratie krijgen dan wel een veranderde activiteit. In beide gevallen zal dit resulteren in stimulatie van de celgroei. Deze stimulatie kan geremd worden door in de geactiveerde cel een stukje 'antisense-georiënteerd' DNA of ribonucleïnezuur (RNA) in te brengen. Met 'antisense-georiënteerd' wordt bedoeld dat de oligonucleotidenvolgerde complementair is aan het oncogene stukje DNA dan wel 'messenger' (m)RNA. De anti-sense-georiënteerde oligonucleotiden binden zich in de cel aan de complementaire structuren van het oncogen. Deze binding heeft tot gevolg dat het oncogen-eiwit niet gevormd kan worden. Dit zal resulteren in een afname van de concentratie van het oncogen-eiwit.

Het _K-ras_ oncogeen is één van de vele oncogenen. Activering van _K-ras_ wordt in verschillende tumoren gevonden. Bij naakte muizen (dat zijn muizen waarin de thymus niet wordt aangelegd en die daarom T-cellenen missen) die waren ingespoten met cellen van menselijke grootcellige longkanker, is aangetoond dat na een behandeling met een antisense-stukje _K-ras-RNA_ bij 87% de tumor verdwenen was; dit was niet het geval bij de niet behandelde muizen.1 Klinische onderzoeken zijn gestart en worden telkens gepubliceerd in het tijdschrift _Human gene therapy_. Dit principe is ook toepasbaar voor andere oncogenen. Een van de moeilijkheden van dit onderzoek is dat het gen waarschijnlijk in alle tumorcellen ingebracht moet worden om de therapie effectief te laten zijn. Een eventueel bystander-effect is in dit model nog niet bestudeerd.

Een suppressorgen produceert een tumorsupressor-eiwit. Bij het wegvallen van een dergelijk eiwit neemt de kans op het ontstaan van tumoren toe. Door nu bij een kancer cel met een gemuteerde (dus defect) suppressorgen het goede gen in te brengen, streeft men naar normalisering van het groeigedrag van de cel. Het probleem bij deze genen is dat het gemuteerde gen een gemuteerd eiwit vormt dat in de cel stabiel en actief is. Daardoor kan de besturing van bepaalde cellulare functies verstoord raken. Als het ingebrachte gen effectief werkzaam wil zijn, dan zal het gemuteerde genproduct overheer moeten worden dan wel niet meer tot expressie mogen komen. Om het gemuteerde genproduct te domineren moet men in staat zijn om het normale gen efficiënt in te brengen in de acceptorcel en zal dit in hoge mate tot expressie moeten komen. Er zijn twee manieren om ervoor te zorgen dat het gemuteerde genproduct niet tot expressie komt:

- door gebruik te maken van een antisense-construct tegen het gemuteerde mRNA dan wel tegen het gemuteerde DNA; of
- door gebruik te maken van homologe recombinatie (bij deze methode wordt het gemuteerde gen vervangen door het goede gen).

In tabel 1 is een overzicht gegeven van mogelijke toepassingen van dit onderzoek; een uitgebreider overzicht is te vinden in het artikel van Gutierrez et al.2 In de V.S. bestaat er een door de Food and Drug Administration (FDA) goedgekeurd protocoot betreffende de insertie van het normale p53-gen in patiënten met niet-kleincellige longtumoren. Een probleem bij dit onderzoek is dat het gen waarschijnlijk in alle tumoren gebracht moet worden. Of hier een bystander-effect optreedt, is nog niet bestudeerd.

Bescherming van het normale weefsel tegen chemotherapie. Het is bekend dat tumoren ongevoelig zijn dan wel verloopt van tijd ongevoelig kunnen worden voor chemotherapie. Dit kan veroorzaakt worden door genen die eiwitten produceren die in staat zijn bepaalde chemotherapeutica uit de cel te pompen. Door nu een dergelijk

Tabel 1. Genen waarmee in vitro het maligne fenotype van bepaalde tumoren kunnen worden onderdrukt

<table>
<thead>
<tr>
<th>gen</th>
<th>tumor</th>
</tr>
</thead>
<tbody>
<tr>
<td>wild type:p53-gen</td>
<td>coloncarcinoom</td>
</tr>
<tr>
<td>retinoblastoom-gen</td>
<td>retinoblastoom</td>
</tr>
<tr>
<td>β-actine-gen</td>
<td>melanoom (muis)</td>
</tr>
<tr>
<td>E-cadherine-gen</td>
<td>mammacarcinoom</td>
</tr>
<tr>
<td>fibronectineresceptoren-gen</td>
<td>ovariumcarcinoom</td>
</tr>
<tr>
<td>cyclisch-adenosinemonofosfaat-receptoren</td>
<td>nercarcinoom</td>
</tr>
</tbody>
</table>
gen in gezond weefsel in te brengen kan dit weefsel ongevoelig worden voor deze chemotherapeutica. Dit is bijvoorbeeld aangetoond in beenmergcellen van muisen. Bij deze muisen werd gebruik gemaakt van het 'multiple drug resistance' (MDR)-gen. Een actief MDR-gen is in staat een eiwit te produceren dat op zijn beurt in staat is bepaalde chemotherapeutica uit de cel te pompen. Dit gen werd in vitro ingebracht in muizebeenmergcellen, die daarna werden teruggespoten. Na deze behandeling was men in staat een hogere dosis chemotherapie te geven (die normaal toxisch voor het beenmerg zou zijn en waartegen het MDR-gen resistentie gaf), zonder dat dit resulteerde in beenmergotoxiciteit. Men is bezig om dit ook te realiseren in menselijke beenmergcellen. Er zijn naast het MDR-gen ook andere genen die verband houden met resistentie. Volgens het beschreven principe zouden deze resistentiegenen ook in aanmerking kunnen komen om normale cellen te beschermen tegen bepaalde chemotherapeutica. Voorbeelden van deze genen zijn: 'multidrug related protein' (MRP)-gen, dihydrofolatraeductase-gen, glutation-transferase-S-gen, aldehyde-dehydrogenase-gen, thymidilaat-synthase-gen, 6-O-methylguanine-DNA-methyltransfe-
rase-gen, metallothionine-producerende genen.

Het activeren van het immuunsysteem tegen kankercel-
len. De mogelijkheden voor het activeren van het immu-
nsysteem tegen kankercellen splitsten zich in twee richtingen. Ten eerste streeft men ernaar om het immu-
nsysteem agressiever te maken. Dit kan gerealiseerd worden door het inbrengen van een gen voor cyto-
kinen, zoals het tumornecrosisfactor (TNF)-gen in tumorinfiltrerende lymfocyten. Deze lymfocyten zijn in staat kankercellen te doden, maar in aanwezigheid van bepaalde cytokinen gebeurt dit effectiever.

Ten tweede streeft men naar het meer immunogeen
maken van de tumor. Dit kan men doen door het DNA dat de code draagt van bepaalde cytokinen (bijvoor-
beeld TNF, granulocyt-macrafs-kolonie-stimulerende factor (GM-CSF), interleukine-2) in vitro in kankercel-
len in te brengen, zodat bij het actief zijn van deze genen deze cytokinen worden gemaakt. Dit komt herkennen van deze cellen door het immuunsysteem ten goede. Deze gemodificeerde tumorcellen worden, na bestrald te zijn, gebruikt als vaccin. Men hoopt op deze manier dat de niet genetisch veranderde tumorcellen nu ook herkend zullen worden door het immuunsysteem of, anders gezegd, men hoopt op het ontstaan van kr髹reacti-
viteit. Er zijn klinische trials gestart.

Het doden van de kankercel van binnenuit. Door in een tumorcel een 'suicide-gen' te plaatsen zal in die cel een eiwit gemaakt worden dat de cel van binnenuit kan vergiftigen. Een voorbeeld van een dergelijk suicide-gen is het thymidine-kinase-gen. Dit gen zorg ervoor dat in de kankercel thymidine-kinase wordt gemaakt. Door nu deze cel bloot te stellen aan ganciclovir ontstaat celdood, doordat thymidine-kinase ganciclovir omzet in een cyto-
toxische stof. Andere mogelijkheden van suicide-genen zijn het cytosine-deaminase-gen (dit zet fluorocytosine om in het toxische fluorouracil), het β-glucosidase-gen (dit zet amygdaline om in het toxische cyanide) en het nitroreductase-gen (dit zet het dinitrofenylazidined CB 1954 om in een cytotoxisch produkt). Bij het gebruik van suicide-genen in vitro en in proefdiermodellen is een by-
stander-effect aangetoond. Hierbij heeft men gevonden dat één genetisch veranderde tumorcel 9 à 10 onveranderde tumorcellen kan elimineren na blootstelling aan het antiherpesmiddel ganciclovir, zodat het inbrengen van het gen in alle tumorcellen niet nodig is voor het do-
den van alle tumorcellen. Klinische trials worden toege-
past bij patiënten met hersen- en ovariumtumoren.

Een probleem bij dit onderzoek is dat alleen de tu-
morcellen gedood moeten worden en niet de normale cellen. Dit probleem kan men ondervangen door ge-
bruik te maken van weefselspecifieke 'promotoren', stukjes DNA die ervoor zorgen dat bepaalde genen al-
leen tot expressie komen in bepaalde celtypen. Zo is in levercellen de albuminepromotor actief en mede daar-
door is er albuminesynthese. De α-foetoproteïnepromo-
tor is echter niet actief en daardoor is er geen α-foeto-
proteïnesynthese. Een gen gekoppeld aan een albu-
minepromotor kan in normale levercellen tot expressie
komen, maar niet in leverkankercellen, want daarin is de
albuminepromotor niet actief. In leverkankercellen is de
α-foetoproteïnepromotor en daarmee de α-foetoprotei-
nesynthese actief, in normale levercellen echter niet.
Door nu een gen (bijvoorbeeld een suicide-gen) te kopp-
pelen aan de α-foetoproteïnepromotor zal dit gen tot exp-
ressie komen in leverkankercellen en niet in de norma-
le levercellen. Na toediening van ganciclovir zullen
alleen de kankercellen in de lever doordaan. Mogelijk-
heden voor weefselspecifieke promotoren zijn weerge-
geven in tabel 2, een uitgebreider overzicht is te vinden
in het artikel van Gutierrez et al.2

VOORWAARDEN OM GENTHERAPIE TOE TE PASSEN IN DE KLINIEK
Om gentherapie te kunnen toepassen bij patiënten moet
voldaan worden aan de volgende voorwaarden:
- het moet gaan om een levensbedreigende ziekte;
- de DNA-volgorde van het gen dat men wil gebruiken, moet bekend zijn; en
- cellen die buiten het lichaam met een gen veranderd zijn, moeten in het lichaam op de juiste plaats terugge-
plaatst kunnen worden, of cellen moeten in het lichaam bereikbaar zijn om er genen in te brengen.

CONCLUSIE
De toepassing van genen bij kanker lijkt veelbelovend. Gentherapie is een geheel nieuwe benadering om tum-
morcellen te attaqueren en creëert de mogelijkheid om tumorcellen te veranderen in normale cellen, of althans

TABEL 2. Voorbeelden van weefselspecifieke promotoreiwitten

<table>
<thead>
<tr>
<th>eiwit</th>
<th>komt onder meer tot expressie in</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-foetoproteïne</td>
<td>hepotoom</td>
</tr>
<tr>
<td>thyreoglobulin</td>
<td>schildklier</td>
</tr>
<tr>
<td>calcitonine</td>
<td>schildklier (parafolliculaire cellen)</td>
</tr>
<tr>
<td>prostaatspecifiek antigen</td>
<td>prostaat</td>
</tr>
</tbody>
</table>

Ned Tijdschr Geneeskd 1995 juli;139(26)
Capita selecta

Navelstengbloed ter vervanging van beenmerg voor allogene transplantatie van hematopoëtische stamcellen

J.H.F. Falkenburg en F.T.H. Lim

Transplantatie van allogene hematopoëtische stamcellen is de behandeling van keuze bij een aantal hematologische ziekten, waaronder aangeboren stoornissen van het immunologische apparaat, hereditable anemieën, bepaalde stofwisselingsziekten, en hematologische maligniteiten, met name de leukenemieën. De optimale allogene donor voor hematopoëtische stamceltransplantatie is een broer of zuster van de patiënt met identiek humaan leukocytenantigeneen (HLA). Wanneer een HLA-identieke donor binnen de familie niet beschikbaar is, is het vooral bij jonge patiënten soms mogelijk een hematopoëtische stamceltransplantatie te verrichten met het beemerg van een niet-verwante donor van wie het HLA-compabil is.

Omdat het HLA-systeem erg polymorf is, is de kans zeer klein dat een niet-verwante beenmergodonor HLA-compabil is. Daarom is een zeer groot aantal vrijwilligers dat bereid is om beenmerg te doneren getypeerd voor HLA. In het totaal hebben zich over de gehele wereld meer dan 2 miljoen vrijwilligers opgegeven als beenmergodonor. Door het extreme polymorfisme van het HLA-systeem is er, ondanks deze enorme omvang van het donorbestand, voor slechts een minderheid van de patiënten die geen HLA-identieke, verwante donor hebben, een transplantatie mogelijk met het beemerg van een niet-verwante donor. Doordat slechts een gedeelte van de donors volledig voor HLA getypeerd is, niet elke donor meer traceerbaar is op het moment dat hij nodig is, en doordat er nog bloedafnames voor immunologische, virale en hematopoëtische tests verricht moeten worden, kan de periode tussen de aanvraag en de eigenlijke transplantatie soms meer dan 6 maanden bedragen. In een aantal gevallen is dit langdurige en kostbare traject van zoeken naar een geschikte beenmergodonor te lang, waardoor de patiënt niet meer aan een transplantatie toekomt. Ook is de kans dat voor patiënten uit een etnische minderheidsgrupening een HLA-identieke, niet-verwante donor wordt gevonden soms kleiner. Dit komt door verschillen in frequenties van bepaalde HLA’s tussen de verschillende etnische groepen.

Om genoemde redenen zoekt men naar alternatieve bronnen van hematopoëtische stamcellen voor transplantatie, waarbij het niet meer nodig is het beenmerg af te nemen van vrijwilligers. Eén van de andere bronnen van hematopoëtische stamcellen voor transplantatie doeleinden is navelstengbloed.

HEMATOPOëTISCHE PROGENITORCELLEN IN NAVELBROED

Reeds in de jaren zeventig was het bekend dat navelstengbloed vergeleken met gewoon bloed van kinderen en volwassenen relatief veel bloedvormende voorlopercellen (hematopoëtische progenitorcellen (HPC’s)) bevat. HPC’s zijn cellen die, wanneer ze onder bepaalde condities in vitro worden gekweekt, in aanwezigheid van hematopoëtische groefactoren kolonies kunnen vormen van rijpe bloedcellen. Om deze reden worden deze cellen ook wel ‘colony-forming units’ (CFU’s) genoemd. Een CFU wordt nader getypeerd door analyse van het type rijpe bloedcellen dat in de uitgegroeide kolonie aanwezig is. HPC’s die uitgroeiën tot kolonies van granulocyten en (of) monocyten noemt men ‘CFU-granulocytes/monocytes’ (CFU-GM). Voorlopercellen die in vitro in aanwezigheid van ondermeer erythropoëtine grote groepen erytroïde cellen kunnen produceren, worden ‘burst-forming units’ van de erythropoëtine genoemd (BFU-E). Wanneer een HPC in staat is uit te groeien tot verschillende celltypes, zoals granulocyten, erytrocyten, megakaryocyten en monocyten, wordt deze cel CFU-GEMM genoemd. Naarmate de voorlopercel meer ver-

*Namens de Stichting Eurocord Nederland.

Dr.J.H.F.Falkenburg, internist; F.T.H.Lim.